178 research outputs found

    The statistical neuroanatomy of frontal networks in the macaque

    Get PDF
    We were interested in gaining insight into the functional properties of frontal networks based upon their anatomical inputs. We took a neuroinformatics approach, carrying out maximum likelihood hierarchical cluster analysis on 25 frontal cortical areas based upon their anatomical connections, with 68 input areas representing exterosensory, chemosensory, motor, limbic, and other frontal inputs. The analysis revealed a set of statistically robust clusters. We used these clusters to divide the frontal areas into 5 groups, including ventral-lateral, ventral-medial, dorsal-medial, dorsal-lateral, and caudal-orbital groups. Each of these groups was defined by a unique set of inputs. This organization provides insight into the differential roles of each group of areas and suggests a gradient by which orbital and ventral-medial areas may be responsible for decision-making processes based on emotion and primary reinforcers, and lateral frontal areas are more involved in integrating affective and rational information into a common framework

    Out-of-equilibrium physics in driven dissipative coupled resonator arrays

    Get PDF
    Coupled resonator arrays have been shown to exhibit interesting many- body physics including Mott and Fractional Hall states of photons. One of the main differences between these photonic quantum simulators and their cold atoms coun- terparts is in the dissipative nature of their photonic excitations. The natural equi- librium state is where there are no photons left in the cavity. Pumping the system with external drives is therefore necessary to compensate for the losses and realise non-trivial states. The external driving here can easily be tuned to be incoherent, coherent or fully quantum, opening the road for exploration of many body regimes beyond the reach of other approaches. In this chapter, we review some of the physics arising in driven dissipative coupled resonator arrays including photon fermionisa- tion, crystallisation, as well as photonic quantum Hall physics out of equilibrium. We start by briefly describing possible experimental candidates to realise coupled resonator arrays along with the two theoretical models that capture their physics, the Jaynes-Cummings-Hubbard and Bose-Hubbard Hamiltonians. A brief review of the analytical and sophisticated numerical methods required to tackle these systems is included.Comment: Chapter that appeared in "Quantum Simulations with Photons and Polaritons: Merging Quantum Optics with Condensed Matter Physics" edited by D.G.Angelakis, Quantum Science and Technology Series, Springer 201

    Impairment of Auditory-Motor Timing and Compensatory Reorganization after Ventral Premotor Cortex Stimulation

    Get PDF
    Integrating auditory and motor information often requires precise timing as in speech and music. In humans, the position of the ventral premotor cortex (PMv) in the dorsal auditory stream renders this area a node for auditory-motor integration. Yet, it remains unknown whether the PMv is critical for auditory-motor timing and which activity increases help to preserve task performance following its disruption. 16 healthy volunteers participated in two sessions with fMRI measured at baseline and following rTMS (rTMS) of either the left PMv or a control region. Subjects synchronized left or right finger tapping to sub-second beat rates of auditory rhythms in the experimental task, and produced self-paced tapping during spectrally matched auditory stimuli in the control task. Left PMv rTMS impaired auditory-motor synchronization accuracy in the first sub-block following stimulation (p<0.01, Bonferroni corrected), but spared motor timing and attention to task. Task-related activity increased in the homologue right PMv, but did not predict the behavioral effect of rTMS. In contrast, anterior midline cerebellum revealed most pronounced activity increase in less impaired subjects. The present findings suggest a critical role of the left PMv in feed-forward computations enabling accurate auditory-motor timing, which can be compensated by activity modulations in the cerebellum, but not in the homologue region contralateral to stimulation

    Brain Activation Patterns Characterizing Different Phases of Motor Action: Execution, Choice and Ideation.

    Get PDF
    Motor behaviour is controlled by a large set of interacting neural structures, subserving the different components involved in hierarchical motor processes. Few studies have investigated the neural substrate of higher-order motor ideation, i.e. the mental operation of conceiving a movement. The aim of this functional magnetic resonance imaging study was to segregate the neural structures involved in motor ideation from those involved in movement choice and execution. An index finger movement paradigm was adopted, including three different conditions: performing a pre-specified movement, choosing and executing a movement and ideating a movement of choice. The tasks involved either the right or left hand, in separate runs. Neuroimaging results were obtained by comparing the different experimental conditions and computing conjunction maps of the right and left hands for each contrast. Pre-specified movement execution was supported by bilateral fronto-parietal motor regions, the cerebellum and putamen. Choosing and executing finger movement involved mainly left fronto-temporal areas and the anterior cingulate. Motor ideation activated almost exclusively left hemisphere regions, including the inferior, middle and superior frontal regions, middle temporal and middle occipital gyri. These findings show that motor ideation is controlled by a cortical network mainly involved in abstract thinking, cognitive and motor control, semantic and visual imagery processes

    Ipsilesional trajectory control is related to contralesional arm paralysis after left hemisphere damage

    Get PDF
    We have recently shown ipsilateral dynamic deficits in trajectory control are present in left hemisphere damaged (LHD) patients with paresis, as evidenced by impaired modulation of torque amplitude as response amplitude increases. The purpose of the current study is to determine if these ipsilateral deficits are more common with contralateral hemiparesis and greater damage to the motor system, as evidenced by structural imaging. Three groups of right-handed subjects (healthy controls, LHD stroke patients with and without upper extremity paresis) performed single-joint elbow movements of varying amplitudes with their left arm in the left hemispace. Only the paretic group demonstrated dynamic deficits characterized by decreased modulation of peak torque (reflected by peak acceleration changes) as response amplitude increased. These results could not be attributed to lesion volume or peak velocity as neither variable differed across the groups. However, the paretic group had damage to a larger number of areas within the motor system than the non-paretic group suggesting that such damage increases the probability of ipsilesional deficits in dynamic control for modulating torque amplitude after left hemisphere damage

    Motor Properties of Peripersonal Space in Humans

    Get PDF
    Background: A stimulus approaching the body requires fast processing and appropriate motor reactions. In monkeys, fronto-parietal networks are involved both in integrating multisensory information within a limited space surrounding the body (i.e. peripersonal space, PPS) and in action planning and execution, suggesting an overlap between sensory representations of space and motor representations of action. In the present study we investigate whether these overlapping representations also exist in the human brain. Methodology/Principal Findings: We recorded from hand muscles motor-evoked potentials (MEPs) induced by single-pulse of transcranial magnetic stimulation (TMS) after presenting an auditory stimulus either near the hand or in far space. MEPs recorded 50 ms after the near-sound onset were enhanced compared to MEPs evoked after far sounds. This near-far modulation faded at longer inter-stimulus intervals, and reversed completely for MEPs recorded 300 ms after the sound onset. At that time point, higher motor excitability was associated with far sounds. Such auditory modulation of hand motor representation was specific to a hand-centred, and not a body-centred reference frame. Conclusions/Significance: This pattern of corticospinal modulation highlights the relation between space and time in the PPS representation: an early facilitation for near stimuli may reflect immediate motor preparation, whereas, at later time intervals, motor preparation relates to distant stimuli potentially approaching the body

    Occlusion of LTP-Like Plasticity in Human Primary Motor Cortex by Action Observation

    Get PDF
    Passive observation of motor actions induces cortical activity in the primary motor cortex (M1) of the onlooker, which could potentially contribute to motor learning. While recent studies report modulation of motor performance following action observation, the neurophysiological mechanism supporting these behavioral changes remains to be specifically defined. Here, we assessed whether the observation of a repetitive thumb movement – similarly to active motor practice – would inhibit subsequent long-term potentiation-like (LTP) plasticity induced by paired-associative stimulation (PAS). Before undergoing PAS, participants were asked to either 1) perform abductions of the right thumb as fast as possible; 2) passively observe someone else perform thumb abductions; or 3) passively observe a moving dot mimicking thumb movements. Motor evoked potentials (MEP) were used to assess cortical excitability before and after motor practice (or observation) and at two time points following PAS. Results show that, similarly to participants in the motor practice group, individuals observing repeated motor actions showed marked inhibition of PAS-induced LTP, while the “moving dot” group displayed the expected increase in MEP amplitude, despite differences in baseline excitability. Interestingly, LTP occlusion in the action-observation group was present even if no increase in cortical excitability or movement speed was observed following observation. These results suggest that mere observation of repeated hand actions is sufficient to induce LTP, despite the absence of motor learning

    Task-related enhancement in corticomotor excitability during haptic sensing with the contra- or ipsilateral hand in young and senior adults

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Haptic sensing with the fingers represents a unique class of manipulative actions, engaging motor, somatosensory and associative areas of the cortex while requiring only minimal forces and relatively simple movement patterns. Using transcranial magnetic stimulation (TMS), we investigated task-related changes in motor evoked potential (MEP) amplitude associated with unimanual haptic sensing in two related experiments. In Experiment I, we contrasted changes in the excitability of the hemisphere controlling the task hand in young and old adults under two trial conditions, i.e. when participants either touched a fine grating (<it>smooth trials</it>) or touched a coarse grating to detect its groove orientation (<it>grating trials</it>). In Experiment II, the same contrast between tasks was performed but with TMS applied over the hemisphere controlling the resting hand, while also addressing hemispheric (right vs. left) and age differences.</p> <p>Results</p> <p>In Experiment I, a main effect of <it>trial type </it>on MEP amplitude was detected (p = 0.001), MEPs in the task hand being ~50% larger during grating than smooth trials. No interaction with age was detected. Similar results were found for Experiment II, <it>trial type </it>having a large effect on MEP amplitude in the resting hand (p < 0.001) owing to selective increase in MEP size (~2.6 times greater) for grating trials. No interactions with age or side (right vs. left) were detected.</p> <p>Conclusions</p> <p>Collectively, these results indicate that adding a haptic component to a simple unilateral finger action can elicit robust corticomotor facilitation not only in the working hemisphere but also in the opposite hemisphere. The fact that this facilitation seems well preserved with age, when task difficulty is adjusted, has some potential clinical implications.</p

    Granger Causality Mapping during Joint Actions Reveals Evidence for Forward Models That Could Overcome Sensory-Motor Delays

    Get PDF
    Studies investigating joint actions have suggested a central role for the putative mirror neuron system (pMNS) because of the close link between perception and action provided by these brain regions [1], [2], [3]. In contrast, our previous functional magnetic resonance imaging (fMRI) experiment demonstrated that the BOLD response of the pMNS does not suggest that it directly integrates observed and executed actions during joint actions [4]. To test whether the pMNS might contribute indirectly to the integration process by sending information to brain areas responsible for this integration (integration network), here we used Granger causality mapping (GCM) [5]. We explored the directional information flow between the anterior sites of the pMNS and previously identified integrative brain regions. We found that the left BA44 sent more information than it received to both the integration network (left thalamus, right middle occipital gyrus and cerebellum) and more posterior nodes of the pMNS (BA2). Thus, during joint actions, two anatomically separate networks therefore seem effectively connected and the information flow is predominantly from anterior to posterior areas of the brain. These findings suggest that the pMNS is involved indirectly in joint actions by transforming observed and executed actions into a common code and is part of a generative model that could predict the future somatosensory and visual consequences of observed and executed actions in order to overcome otherwise inevitable neural delays

    Relationship between Activity in Human Primary Motor Cortex during Action Observation and the Mirror Neuron System

    Get PDF
    The attenuation of the beta cortical oscillations during action observation has been interpreted as evidence of a mirror neuron system (MNS) in humans. Here we investigated the modulation of beta cortical oscillations with the viewpoint of an observed action. We asked subjects to observe videos of an actor making a variety of arm movements. We show that when subjects were observing arm movements there was a significant modulation of beta oscillations overlying left and right sensorimotor cortices. This pattern of attenuation was driven by the side of the screen on which the observed movement occurred and not by the hand that was observed moving. These results are discussed in terms of the firing patterns of mirror neurons in F5 which have been reported to have similar properties
    corecore